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We present rigorous correlation inequalities for connected n-point functions in a 
class of even ferromagnets. The class includes spin-l/2 Ising models and scalar 
field models with potential function V which is even and continuously differen- 
tiable with V' convex on [0, ~) .  These inequalities are obtained by pushing 
ahead with the method of Ellis, Monroe, and Newman at its maximum. 
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1. I N T R O D U C T I O N  

The correlation inequality is a powerful tool in the rigorous study of 
statistical mechanical system (see Ref. 1 and references therein). Many 
correlation inequalities are known for the spin-l/2 classical Ising model. 
Some of them have been shown to hold for some other models t2~ including 
lattice scalar field models. They have played important role in proofs of the 
triviality ~ or nontriviality ~4) of the (q)4)d field models for d > 4  or d < 4 ,  
respectively. 

In view of these points, we think it very important to try to find new 
correlation inequalities maximally within the reach of the presently known 
methods. In this spirit, we have exploited the method of Refs. 5, 6, and 7 
and extend it to find new correlation inequalities for the connected n-point 
function Un. 

We consider models of general even ferromagnets with pair interac- 
tions in a positive external field. The models are defined by a finite family 
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of real-valued random variables 4=- {~0~;i= 1 ..... N}, whose joint 
probability distribution gh~.-.~,~ on R N has the form 

N 

d~h,...hu(crp)=Z({h~}) ~exp[-H(qS)]  [ I  dv,(~~ (1.1) 
i = 1  

where H(~b) is the Hamiltonian defined by 

Z Sij 0i oj- Z 
l<~i<~j<~N l<~i<~N 

hi(p i (1.2) 

and Z({hi})~ Z(h~ ,..., hu) is the partition function defined by 

IV 

Z({h ,} )=fR e x p [ - H ( ~ ) ]  I~ dv,(q),) (1.3) 
N i = l  

The indices i and j label sites in a lattice A = { 1,..., N} of N sites, q~ 
denotes the spin of the ith site, Jij>~O the ferromagnetic interaction 
strength between q)i and cpj, and hi~> 0 the nonnegative external magnetic 
field strength at the ith site. 

Let d ~ be the set of all the even probability measures satisfying 

f exp(bq~ 2) dv(~o) < ~ (1.4) 

for some b > 0. 
We define a subclass f# of g as follows. 

D e f i n i t i o n .  Given v s g ,  let ~(a), a =  1 ..... 4 be four independent 
copies of a random variable q5 distributed by v, not g in (1.1). Let 

= (~b(1),..., cb (41) and m = (m(~),..., m(4)), where each m (a) is a nonnegative 
integer. We define an orthogonal matrix B by 

1 
B = ~  

1 1 1 1 

1 - 1  1 - 1  

1 1 - 1  - 1  

- 1  1 1 - 1  

(1.5) 

and use the following notations: 

4 

(B~) (~1 = ~ B,b~(b), 
b = l  

4 

a = l  

(1.6) 
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Now we define the EMN (Ellis Monroe Newman) class ~f by 

(r  { v ~ ;  Eo[(B~)  r"] ~>0 for all m} (1.7) 

where the expectation Eo[F]  is defined by 

4 
Eo[F ] = f F( qS (1),..., ~(4)) 1-I H dv(qP(a)f) (1.8) 

a=l i~A 

For the explicit examples of the measure dv~ ~q, refer to Refs. 6, 7, 
and 8. 

In Section 2 the method of Ref. 6 is reviewed with our notations and 
generalizations. 

In Section 3 we present new correlation inequalities on U3, U4, and 
U6 and state some applications of them. 

The results on Us and Us are rather complicated. Hence we collect 
them in tables at the end. 

2. THE M E T H O D  OF PROOFS 

For each i = 1,..., N, let ~01 a), a = 1,..., 4 be four independent copies of a 
family of random variables, {~01 ..... ~0N} distributed by the measure 

dp(qS)=Z({O}) ~exp(  ~ Jo~oi~oj) ~ dve(q)~) (2.1) 
i , j~A i~  1 

We denote the (tensor product) expectation E[F], for a function 
F(~(I~,..., ~(4)), by 

f dP(@(')) "'" dp(~(a~) F(#'ql,..., ~b(4)) E[F] (2.2) 

Hence 

f d//(qS(l)) ' . .  dfl(0b (4)) F(qS(1),..., 4 (4)) 

= [Z({O})/Z({hi})] 4 EIF(crP(I),..., q5 (4)) 

With h e -  (hi ..... he), define 

Si  ~'~ (S  (1)' . . . . .  S (4)i) = heBr= (2hi, 0, 0, 0) (2.4) 
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Then, expanding the exponential, we have 

= E [(B~)(")] p(') exp 2 h~(B~o~) ~ 
1 i = 1  

-~- ~ ~ (2hi)mi(1) 

(1)-- 0 i = l  mi(1)! m i -- 
i=l,...,N 

- ~ I3I(2h*)"{') [ ~ ,  ; 
- ,*,-0 ,=~ m , ( 1 ) ~  e (g~ , : )";  

m i -- j 
i= 1,...,N 

where we set m; (1)=  mi(1)+ p~(1) and m;(a)= p~(a), a = 2, 3, 4. 
First, we remark the following fact. (6) 

- -  E [(Bq~)(a)] e('~ [(B~oj)(1)] mj(1) 
1 j = l  

(2.5) 

T h e o r e m  2.1.  (6) Let {(DI , . . . ,  (~0N} be a set of real-valued random 
variables with joint distribution dp. Let {~o]a),..., (o~1}, a = 1,..., 4, be four 
independent copies of {q~l ..... ~0N} and define q)i=(~ol"),...,cp}a)). If 
vl,..., VNSN, then 

E I)~I1 (Bq~i)"' 1 >/0 (2.6) 

for all multi-indices ml,..,, mN. 

Theorem 2.1 can be easily derived if we write the expectation E[F] in 
terms of Eo[F]  as 

E[F]=Z({O})-4 EoIFexp ( ~', Jijg)i'%)] (2.7) 
l<~i~j<~N 

and expand the exponential, through (2.3), (2.7), and (2.8). 
From Theorem 2.1, we can conclude that for arbitrary sets of four 

positive integers P ~ (P(I)  ..... P(4)), 
4 

f d~(Os('))... @(,~(4~) l-I [(~.)~a~],,(o)>o (2.8) 
a = l  

if v~ ..... VN belong to the EMN class ~. Here 4 I-[,~= 1 [(B~)(a)] P(a) denotes 
symbolically 

( B q 0 h ) O ) "  " �9 (B~ip( t ) ) (1 )  • ( B ( p j l )  ( 2 ) ' ' "  (Bq)jp(2)) (2) 

X (Bq)kl)(3)"" (Bqokp(3,)(3) x (Bqoh)(4)'" (Bqolp(4))(4) (2.9) 
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Therefore, expanding the product 1-I4=1 [(BIlI)(a)] P(a), w e  obtain 
correlation inequalities expressed in terms of the expectation with the 
measure d#, corresponding to various choices of P(1) ..... P(4). 

However, some of them give the trivial inequality, i.e., 0/> 0. Hence, to 
obtain meaningful results we must give the criterion to exclude unin- 
teresting cases. Define the variables W (') ~- (B~)  ('~ and consider the follow- 
ing transformations: 

(a) W (a) ~ - W (a) (a = 1,..., 4) (2.!0a) 

(b) W (2)--* - W (2), W (3) ~ - W (3) (2.10b) 

(C) W (2) ~ -- W (2), W (4) ~ - W (4) (2,10c) 

(d) W (3) ~ - -  W (3) ,  W (4) ~ - W (4) (2.10d) 

The transformation (a) corresponds to changing all the signs of 
@a~,a=l , . . . ,4  and (b), (c), (d) to exchanging two of four original 
variables. The measure d# is invariant under these transformations. Thus 
we can conclude that E [ (BO)  m] = 0 unless all me are even or all are odd. 

In the expansion of I~ 4 [(B~)(a)]p(,), 4 P ( 1 ) +  .-. +P(4) terms appear. a = l  

But they can be classified into the set of patterns such that all terms 
belonging to the same pattern have the same expectation value. 

We can make such patterns according to the following procedure. 

(1) Choose one term appearing in the expansion of (2.9). Then 
replace the variable in the first slot by A, whatever it is among (p(1),..., @(4). 
If there are the same sort of variables in other slots, replace all of them by 
A. If the term contains only one sort of variables, it is changed into 
A A . ' .  A after this step and this procedure completes. 

(2) If the term contains more than two sorts of variables, carry out 
the step (1) again for the remainder of the term, using another character B. 
After this step, if there still remain unchanged variables, repeat this 
procedure until all of the variables in the term are replaced by the charac- 
ters A, B, C, D. 

We perform the above procedure by computer programs for all the 
terms appearing in the expansion of (2.9), because the labor of calculations 
increases extremely as the number P ( 1 ) +  ' . .  + P ( 4 )  increases. Then the 
terms are classified into patterns expressed by the characters A, B, C, D. 

For  example, GHS inequality (3.12a) is derived if we choose 
P =  (0, 1, 1, 1). In this case, the expansion (2.9) reduces to the following 
form after the above procedures: 

(1/2 3)(4AAA - 4 A A B  - 4 A B A  - -  4 A B B  + 8 A B C )  (2.11 ) 

822/40/3-4-13 
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Of 43(= 64) terms appearing in the expansion, the numbers of terms 
which have the same pattern are 4 for A A A ,  12 for AAB,  12 for ABA,  12 
for ABB, and 24 for ABC. Smallness of each coefficient is due to the can- 
cellation among the terms which have the same pattern but different signs. 

3. N E W  C O R R E L A T I O N  I N E Q U A L I T I E S  

We have classified the patterns appearing in the expansion (2.13), 
according to the procedure given in the previous section. The inequalities 
for U5 and U8 are rather complicated and hence we collect them in the 
tables. Here the limitations of the range of the possible values of 
P =  (P(1),..., P(4)) is due to the capacity of the computer program. 

In the following, we present some of our results together with the 
possible applications. We define the n-point function 

( (pi . .. q~i~ = ( ~oi~ " " q)i= exp(Zi~A hiq)i) )o (3.1) 
(exp(Zi~ A hA0~) ) 0 

where the expectation ( F ) o  is defined by 

( F ) o = - f  F(@,exp(~,~AJ, ,cp#pj) i~Advi( (p i ,  (3.2) 

For notational simplicity, we use ( i~. . .  i , )  instead of (p~, ' - '  (o~,). 
The connected n-point or Ursell function Un is defined by 

U,(il,..., i=) =- Ohm." Ohi~ in exp ~ hiq)~ o (3.3) 

To be more concrete, 

U,(1) = ( 1 )  (3.4) 

U2(1, 2 ) =  ( 1 2 ) -  ( 1 ) ( 2 )  (3.5) 

U3(1 , 2, 3 )=  ( 1 2 3 ) -  ( 1 ) ( 2 3 ) -  ( 2 ) ( 1 3 )  - ( 3 ) ( 1 2 )  

+ 2 ( 1 ) ( 2 ) ( 3 )  (3.6) 

and 

U(4~ 2, 3, 4 ) =  (1234)  - ( 1 2 ) ( 3 4 )  - ( 1 4 ) ( 2 3 )  - ( 1 3 ) ( 2 4 )  (3.7) 

U(6~ 2, 3, 4, 5, 6) = (123456) - ~ ( i j ) ( k l m n )  
{ i , j }  = {1,...,6} 

+ 2 ~ ( i j ) ( k l ) ( m n )  (3.8) 
pairings 
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U(8~ 8 )=  ( 1 2 3 4 5 6 7 8 ) - ~  ( il i2 ) ( i 3 . . . i 8 )  

- ~ ( i l " " i 4 ) ( i s ' " i 8 )  

+ 2 ~  ( i l i 2 ) ( i 3 i 4 ) ( i 5 " " i 8 )  

- 6 ~ ( i l i 2 ) ( i 3 i 4 ) ( i 5 i 6 ) ( i 7 i 8 )  (3.9) 

where we have used the superscript (0) to indicate the connected n-point 
function obtained by ommitting the terms which contain at least one 
expectation ( i i ' " i , )  with n odd. 

Note that 

v,(1) >~ o, u:(1, 2)/>o (3.10a, b) 

and more generally 

(,pA) ~>0, (~0A; ~0% ---- ('pA'p~) -- (~0A) ( 'pB) ~> 0 (3.11) 

which are known as the GKS inequalities, ~ respectively. 
Now we enumerate new correlation inequalities. [Note that the 

inequalities (3.12a), (3.13a), and (3.14a) were already derived in Ref. 6, 
which are presented for completeness.] 

T h e o r e m  3.1. If vl,..., vN belong to the EMN class, then 

0 >~ U3(i, j, k) >>- - 4 ( i ) ( j ;  k )  (3.12a, b) 

T h e o r e m  3.2. If v~,..., VN belong to the EMN class, then 

0>1 U(4~ j, k, l)>~ - 4 ( i j ) ( k l )  (3.13a, b) 

If vl,..., v N belong to the EMN class, then Theorem 3.3. 

U(6~ i 6 ) ~  < - -  4 2 ( i ' i i~2)  U(~ ' i'6) 
5 1 4 t 3,'"~ 

U(6~ ..... i6) ~ - -  4 2 ~4  1, 3 , ' " ,  5 1 ( i l i ' ; )  r;(~ i'6) 

16 
15 ~ ( i l i l ) ( i '3 i '4) ( i ; i '6)  

(3.14a) 

(3.14b) 

where the sum ~ i  extends over the 15 different partitions of {il,... , i6} into 
subsets {i'1, i;} and {i~,..., i;}, and the sum ~2 over the 15 different par- 
titions of {il,..., i6} into subsets {i'1, i;}, {i;, i;}, and {i;, i;}. 
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The obtained inequalities for Un and corresponding multi-indices 
P---(P(1),..., P(4)) are collected in Tables I and II. For example, the GHS 
inequality (3.12a) corresponds to the choice P = ( 0 ,  1, 1, 1) and the 
Lebowitz inequality (3.13a) to P = ( 1 ,  1, 1, 1). Here we remark that 
inequalities (3.14a, b) are symmetrized in terms of arguments, using the fact 
that ( i j ) ,  U4(il,..., i4) and U 6 ( i  1 ,..., i6) are totally symmetric under the per- 
mutations of their arguments. For example, corresponding to 
P = (3, 1, 1, 1), we obtain 

U(6~ 6)~< - 4 ( 1 2 )  U{4~ 4, 5, 6) 

- 4 ( 1 3 1  Us~ 5, 6 ) - 4 ( 2 3 1  U(4~ 4, 5, 6) (3.15) 

Table I. Upper and Lower Bounds on the Connected n-Point Function U. 
with the Corresponding Multi- Indices P =  (P(1)  ..... P (4) ) .  

n Upper bounds Lower bounds 

3 {0, 1, 1, 1) (3.12a) 
GHS 

4 {1,1,1,1) (3.13a) 
Lebowitz 

{0, 3, 1, 1) 
(0, 1, 3, 1) A2 
{o, 1, 1,3) 
(2,1,1,1) A3 

(1, O, O, O) (3.10a) 
{0,2,0,0)) 
(0, 0, 2, O) I (3.10b) 
{0,0,0, 2) J 

(1,2,0,011 
(1, o, 2, o) l/3.12b) 
(1,0,0,2)~ 
{0, 2, 2, 0) 1 
(0, 2, 0, 2) 
(0, 0, 2, 2) I (2, 2, O, 0) (3.13b) 
{2, 0, 2,01] 
(2,0,0, 2)]  
{0,4, 0, 0)} 
(0, 0, 4, 0)l A1 ~ 
(0, O, O, 4) I 
(1,0,2,2/} 
(1,2,0,21 A4 
(1,2,2,0) 

(1,4,0, 0) 1 
(1,0,4,01 A5 
(1, 0, 0, 4) 

{3, 2, 0, 0} I 
(3,0,2,0) A6 
(3, 0, 0, 2) 

a A1, A2, etc. refer to sections of the Appendix. 



Correlation Inequalities for a Class of Even Ferromagnets 571 

Table I1. Upper and Lower Bounds on the Connected n-Point Function U .  
wi th  the Corresponding Mult i - Indices P =  (P(1)  ..... P (4 ) )  

n Upper bounds Lower bounds 

6 (3, 1, l, 1) 1 (0,2,2,2) I 
(1,3,/,t) (3.14a) (2,0,2,2) 
(1, 1, 3, 1) ,(2, 2, 0, 2) (3.14b) 
(1, 1, 1,3) (2,2,2,0) 

(0'2'4'0) I (0,2,0,4) 
(0, 0, 2, 4) 
(0, 4, 2, 0) 
(0,4,0,2) 

(0,0,4,2)  
(2, 4, 0, 0) ( A7a 
(2,0,4,0) 
(2,0,0,4) 
(4, 2, 0, 0) 
(4,0,2,0) 
(4,0,0,2) 

(0,6,0,0) I 
(0,0,6,0) A8 
(0,0,0,6) 

8 (3, 3, 1,1) A9 (2, 2, 2, 2) All 
(5, 1,1,1) A10 (4, 2, 2,0) A12 

(4,4,0,0) A13 
(6, 2,0, 0) A14 

a A7, A8, etc. refer to sections of the Appendix. 

which reduces to (3.14a) after the above symmetrization. Note that such 
symmetrizations are performed for the inequality cited in each table. 

The inequality (3.13b) leads to the conclusion that the renormalized 
coupling constant g of 2(q~4)a theory defined by 

g(4~_= [ 04j/(gz~a) (3.16) 

has the uniform upper bounds, which depends only on the dimension d. 
The similar result 

U4(Xl,..., x4)~- -2(q~xl~ox2)(q~x3q~x4) (3.17) 

was proven by Percus (1~ and Aizenman (3~ for the classical spin-l/2 Ising 
model. It can be also proven for the ~p4 field models Using the Grif- 
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fiths-Simon representation. Our derivation of (3.13b) is immediate and 
(3.13b) holds for more general class in the sense that lattice scalar field 
models with general potential function V(q)) satisfying the condition (c) of 
Theorem 1.2 of Refs. 6, which cannot necessarily be approximated by the 
classical Ising model through the Griffiths-Simon representations. 

If we assume the inequality ~176 

U~6~ ..... 6)/> 0 (3.18) 

and combine it with (3.13) and (3.15), we can prove the triviality of the 
continuum limit of lattice scalar models in d > 4  dimensions, which have 
the potential function of the form 

V(go 2 ) = 2(p 6 "1" 1,/~0 4 "Jr- 0"(~0 2 (3.19) 

with 2/> 0,/~ >~ 0, a e R. Here the triviality implies that the dimensionless 
four-point coupling constant g(4) and six-point o n e  g(6)_= IF61/(Z3~2a) both 
vanish in the critical limit (~/" c~ ), where /"6 is the connected one-particle 
irreducible part of the six-point function. (See Ref. 12 for details and other 
applications.) 

ACKNOWLEDGMENTs 
We would like to thank K. Yamawaki for reading the manuscript. 

APPENDIX 
A1. P = (0, 4, 0, 0), (0, 0, 4, 0), (0, 0, 0, 4): 

U(4~ 2, 3, 4).1.4 ~ ( i l i2)( i3 i4)  >/0 

A2. P = (0, 3, 1, 1), (0, 1, 3, 1), (0, 1, 1, 3): 

6 
U5(1,..., 5 ) + ~  U2(ix, i2) U3(i3, i4, i5)~0 

A3. P =  (2, 1, 1, 1): 

8 2 
U5(I,... , 5)-t-7'5" , ( i l )  U4(i 2 ..... i5) .1.-~}-', ( i l i2)  U3(i3, i4, i5) 

6 
1. -;~ ( i l ) ( i2)  U3(i  3, i4, i5)~<0 

3 - -  
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A4. P= (1, O, 2, 2), (1, 2, O, 2), (1, 2, 2, 0): 

4 4 
Us(l,... , 5 ) + ~  ( i ~  U4(i:,..., i 5 ) + ~  (i, i25 U3(i3, i4, i5) 

4 16 
5 ~ ( i l ) ( i25 U3(i3' i4' is) + - ~  (il 5(i2i~5(iai55 

16 
5 ~ (il 5(i25(i35(i4i55 + 16(15(25(35(4)(55  >1 0 

AS. e=(1,4,0,0),  (1,0,4,0), (1,0,0,4): 

4 ~.2 
Us(1 ..... 5) + ~ 2  (i15 U4(i2, ..., i5)+ ~ (iai2) U3(i3, i4, i55 

52~ i15(i25 U3(i3, i4, i55~-1-~65 2 (ii5(i2i35(i4i55 

48 
5 ~(i15(i25(i35(i4i55+48(15(25(35(45(55>f0" 

A6. e=(3,2,0,0),  (3,0,2,0), (3,0,0,2): 

Us(1 ..... 5)+ 12~ (i15 U4(i2,...,is)+~E (ili25 U3(i3, i4, i55 

16 16 
+ - - ~  (i15(i25 U3(i3, i4, i 5 ) + - - ~  (i15(i2i35(i4i55 

1 ;~  (i15(i25(i35(i4i55 - 16(15(25(35(45(55/>0 

573 

A7. P=(0,2,4 ,05,  (0,2,0,4),  (0,0,2,45, (0,4,2,0),  (0,4,0,2),  
(0,0,4,2),  (2,4,0,0) ,  (2,0,4,0),  (2,0,0,4),  (4,2,0,0),  
(4, O, 2, 0), (4, O, O, 2): 

28 
U~6~ 6) + ] - ~  (i, i2) U?)(i3 ..... i6)+ ~ (ili25(i3i45(i5i65 <~0 

A8. P= (0, 6, 0, 0), (0,0,6,0), (0,0,0,6): 

U(6~ 6) + 4 ~ (il i25 U(4~ ..... i6) + 16 ~ (iii25(i3i45(i5i65 ~ 0 
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A9. P =  (3, 3, 1, 1): 

6 36 
U(8~ ..... 8) + -~ Y' ( i l  i2 ) U(6~ ..... i8) + ~ ~ U(4~ ..... i4) U(4~ ..... i8) 

24 
+ -~ ~ (ili2~(i3i4~ U(4~ ..... i8) ~< 0 

AIO. P= (5, 1, 1, 1): 

U(8~ ..... 8) + 10 ~ (i~i2) U(6~ ..... i8) + 4  ~ U(4~ ..., i4) U(4~ ..., i8) 

8 
+ - ~  (i~i2)(i3i4) U(4~ i 8 ) < 0  

All. P = ( 2 , 2 , 2 , 2 ) :  

4 44 
U(8~ 8 )+f f  ~ ( i l  i2) U~6~ ..... i8) +~--~ ~ U(4~ ..... i4) U(4~ ..... i8) 

16 
+ - ~  (ili2)(i3i4) U(4~ ..., i8) 

64 
+~-6~ ~ (ili2)(i3i4)(i5i6)(i7i8) >/0 

A12. P = (4, 2, 2, 0): 

8 28 
U(8~ 1,''-, 8 ) + 7 ~  (ili2) U(6~ ..... i8) + ~  ~ U(4~ ..... i4) U(4~ ..-, i8) 

128 
+ - i - ~  (ili2)(i3i4) U(4~ i8) 

64 
+ - ~  (ili2)(i3i4)(i5i6)(i7i8) ~0. 

A14. P = (4, 4, O, 0): 

12 76 
U(8~ ..... 8) +--ff-~ ( i l i 2 )  U(6~ ..... i8) + ~ - ~  U(4~ ..., i4) U(~ i8) 

16 
+ - ~  (ili2)(i3i4) U(4~ ..... i8) 

192 
+ - ~ - ~  (ili2)(i3i4)(i5i6)(i7i8) >10 
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A 1 4 .  P = (6, 2, 0, 0): 

U~~ 1,..., 8 ) + ~-~ E ( i l i2 ) U~6~ ..... i8 ) + ~ • U~4~ ..... i4) U~4~ ,..., i8 ) 

+ ( i l i 2 ) ( i 3 i 4 )  U~4~ -.., i8) 

64 
+---7- ~.. ( i l i 2 > ( i 3 i 4 > ( i 5 i 6 > ( i 7 i 8 ~  >~ 0 
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